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We present a gauge theory, Abelian but not equivalent to electrodynamics, for a conjectured hexatic
N + 6 phase near the transition to the hexagonal discotic phase. The bond-angle field 2, determining the
local orientational order for discotic phases, plays the role of a gauge field. We perform an appropriate
gauge transformation, by which the bend mode of the director distortion is decoupled from the density-
wave order parameter. Furthermore, as a consequence of the performed gauge transformation, the bend
term in the free energy becomes nonanalytic in the wave vector. As an exact result, the bend elastic con-
stant K ;, being the coefficient of such a nonanalytic term in the free energy, has no critical enhancement

to all orders in perturbation theory.

PACS number(s): 64.70.Md, 64.60.—i, 05.70.—a, 05.20.—y

I. INTRODUCTION

The melting of the hexagonal discotic phase into the
nematic phase was described by a model [1,2] which as-
sumes the existence of an intermediate hexatic N+6
phase [1,3]. The hexatic phase is predicted on symmetry
grounds, but it is still experimentally undiscovered. Such
a phase can be viewed in the framework of bond orienta-
tionally ordered phases [3—-5] that have been theoretically
predicted in a wide class of systems. In fact, the hexatic
phase is intermediate between the fully disordered phase
and the ordered one, since it is translationally invariant
like the nematic phase, but it shows long-range sixfold
orientational order around the director like the hexago-
nal discotic phase. We point out that the translationally
ordered phase can be considered as a quasi-two-
dimensional system [1], since the sites of the two-
dimensional hexagonal lattice are occupied by columnar
stacks of disklike molecules, parallel to each other, with
liquidlike behavior along the third dimension.

According to the aforementioned model [1], the con-
densation of the hexagonal two-dimensional lattice from
the intermediate N + 6 phase is described by the onset of
a triple mass-density wave in the plane orthogonal to the
nematic director (conventionally taken as the Z axis).
The set of the three complex amplitudes of such a density
wave is assumed as the translational order parameter
describing the phase transition. In the hexatic phase, the
two-dimensional lattice is melted and then the transla-
tional order parameter vanishes. The orientational order,
on the contrary, is maintained through the transition and
then the N + 6 phase, as well as the ordered phase, exhib-
its hexagonal anisotropy. Owing to such a sixfold anisot-
ropy, the nematic director m is not sufficient, in discotic
liquid crystals, to fix orientational order. We must also
introduce a bond-angle field ©,, which gives the local
orientation of the two-dimensional lattice in the XY
plane. Such Q, can be defined as the rotation angle
around the unperturbed nematic director m, between a
given reciprocal lattice vector and a fixed X axis. Actual-
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ly, the local orientational order of the hexatic phase, as
well as that of the hexagonal discotic phase, is deter-
mined by the full rotation field [1]:

Q=Q,m;+(myXém) , (1.1)

where dm is a small distortion of m,, and then it is or-
thogonal to my=Z. In the uniform configuration, the
field © is constant and then can be taken vanishing (i.e.,
Q,=0,6m=0).

As for smectic liquid crystals [6], free energy must be
invariant under global uniform rotations of the system, in
this case under simultaneous rotations of the liquid
columns and of the director, as well as under simultane-
ous torsions of the columns and (2, rotations of the two-
dimensional lattice. The requirement of invariance under
global uniform rotation$ modifies the gradient terms in
the free energy, so that it becomes a local rotation invari-
ance [1,4,6]. Such an invariance can be seen as a local
gauge invariance, i.e., invariance under nonuniform local
rotations, anyway different, in form, from smectic gauge
invariance that is fully analogous with electrodynamic
gauge invariance. The constraint of local invariance un-
der rotations [1,4] yields the coupling between the
translational order parameter and the local field , which
can be therefore considered as a gauge field. The gra-
dient terms are thus analogous to covariant derivatives,
and they contain the gauge coupling between the gauge
field Q@ and the matter, represented by the density-wave
order parameters. The full elastic energy associated with
the strains of Q was calculated in [2], and it corresponds
to the pure gauge field energy in electrodynamics or in
other gauge theories.

However, local rotation invariance of discotics is not
exact, being broken by the bend term. In fact, a
configuration where the liquid columns are bent, which is
the result of a local nonuniform rotation, requires bend
energy with respect to the flat configuration, if the direc-
tor remains locally parallel to the columns. Therefore,
only invariance under uniform rotations remains exact.
The bend mode in discotics then plays the same role that
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the splay mode plays in smectic liquid crystals. In partic-
ular, the hexagonal discotic phase is rigid against twist
and splay deformations, because only bend deformations
are compatible with an undistorted two-dimensional lat-
tice [7].

As a consequence of the coupling between the order
parameter and (), the critical fluctuations of the order pa-
rameter drive the critical enhancements of the Frank
elastic constants, in the hexatic phase near the transition
to the hexagonal phase [1]. In smectic liquid crystals, a
similar coupling between the order parameter and the
director yields the critical enhancements of the Frank
elastic constants [8]. Actually, in discotic liquid crystals,
only splay and twist elastic constants have critical diver-
gent contributions, while the bend mode is noncritical
[1]. In fact, the bend mode of the director distortions
should not be coupled to the mass-density wave order pa-
rameter, as suggested by the above-mentioned distinctive
feature of the bend deformations that can spread through
the system without affecting the local structure of the
two-dimensional lattice [7]. In a similar way, the splay
mode is noncritical for smectic phases [8].

The aim of this paper is just to show that it is possible,
by means of an appropriate gauge transformation, to
separate the director gauge field 6m into the superposi-
tion of a soft-bend mode and a critical mode. The soft-
bend mode, by the suitable gauge transformation, can be
decoupled from the density-wave order parameter. As a
consequence, the bend elastic constant K53 has no critical
enhancement. In fact, the coupling between the order pa-
rameter and the gauge field dm renormalizes the Frank
elastic constants. The divergence of the order-parameter
correlation length near the phase transition, in the hexat-
ic phase, drives the divergence of the splay and twist elas-
tic constants, K; and K,, respectively. The bend com-
ponent, being decoupled from the matter, is therefore
noncritical.

We stress the point that the bend mode breaks local
gauge invariance, for discotic phases. As a consequence,
bend can be decoupled from the translational order pa-
rameter by a gauge transformation, so implying noncriti-
cal behavior of bend. In smectics liquid crystals, a simi-
lar gauge transformation, which gives a gauge corre-
sponding to the transverse gauge in electrodynamics,
decouples the splay noncritical mode from the matter [9].
Anyway, the particular gauge coupling of our model [1]
yields an Abelian gauge theory not equivalent in form to
electrodynamics, and therefore it is intriguing to investi-
gate its formal properties. A somewhat similar gauge
coupling has been proposed for the conjectured cubic-
liquid-crystal phase [4].

As a consequence of the above-described gauge trans-
formation, the propagator of the gauge field dm, in terms
of what we will call the soft-bend gauge, exhibits nonana-
lytic dependence on the wave vector. The coefficient of
such a nonanalytic term in the free energy is just the bend
elastic constant K;. Perturbation theory in the vertex
gauge interaction yields a series of graphs that renormal-
ize the Frank elastic constants. Therefore, the bend con-
stant K is not critically enhanced to all orders in pertur-
bation theory, since it is the coefficient of a nonanalytic
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term in the free energy which cannot be reproduced by
the perturbation expansion. For an analogous reason, the
splay constant K, is not renormalized in smectic phases
[9,10]. We notice that the proposed gauge transforma-
tion, on the one hand, decouples bend from the matter
and, on the other hand, introduces nonanalytic properties
in the bend term of the free energy, so giving self-
consistent results.

Actually, the decoupling gauge transformation shows a
slightly different feature in Fourier space, with respect to
usual coordinate space. In coordinate space, it is possible
to separate the director field 8m into the superposition of
a pure bend mode and a critical mode that is composed of
only twist and splay modes. On the contrary, in Fourier
space, besides the pure soft-bend mode, we obtain a criti-
cal mode that is a mixing of splay, twist, and bend com-
ponent too (see also [11]). That is due to our peculiar
gauge coupling, and it has no analog in smectic gauge in-
variance. Nevertheless, such a residual bend component
in the critical field is not effective to enhance critically
the bend constant.

This paper is divided into three sections of which this
is the first. In Sec. II, we define the general gauge trans-
formation under which the free energy of our model [1,2]
is (indeed, not strictly) invariant. Then we present the
particular gauge transformation by which the bend mode
is decoupled from the order parameter; finally, we write
the free energy in the new gauge, which we call the soft-
bend gauge, both in coordinate space and in Fourier
space. In Sec. III, the propagator of the gauge field, in
the soft-bend gauge, is drawn, and it is shown that, be-
cause of a term nonanalytic in the wave vector, the bend
constant is noncritical.

II. GAUGE TRANSFORMATIONS
IN DISCOTIC PHASES

The order parameter for the condensation of the two-
dimensional hexagonal lattice from the hexatic N+6
phase is a triple mass-density wave [1]:

3
8p(r)= m;(rlexpliq;-r)+c.c. , 2.1

i=1

where 7; (i=1, 2, 3) are the complex local amplitudes
and q; are the shortest reciprocal lattice vectors. The full
free energy of the model, in terms of the local rotation
field Q defined in Eq. (1.1) and of the local order parame-
ter 7; in Eq. (2.1),1is [1,2]

F=F,+F, (2.2a)

with
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3
F0=fd3r [‘1 S In(0P+bn(0ny(c)ns(r) +e,

i=1

’[Vz+iqi-8m(r)]1],»(r)‘2+ 1

and

S Ini(r)]?

oM,
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2 3
+c, Y |7Ii(f)l4

i=1

i=1

2
'[Vl—iﬂz(r)mOXqi]ni(r)‘ ] (2.2b)

Fel=%fd3r{Kl(divSm)2—+—K2(m0-rot8m)2+K3(m0><rot8m)2+y1(VZQ, 24+y,(V,Q,)?+2y,(myrotdm (V,Q,)} ,

where, as usual in Landau free energy, a =ay(T—T%*),
T* being a second-order phase-transition temperature,
while the other coefficients are positive constants. The
free energy (2.2) is written in the “natural” gauge, which
we call the discotic gauge, and it explicitly shows the cou-
pling between the gauge field 2 and the order parameter
7;, in the order-parameter gradient terms.

For our model free-energy, one can define a general
gauge transformation:

_i¢i(r) '

n;(r)=e ni(r) , (2.3a)
dm(r)= A(r)+B(r), (2.3b)
Q,(r)=Q.,(r)+A(r) , (2.3¢)
with
3
>, ¢:(r)=0, (2.4a)
i=1
V,¢,(r)=q; B(r) , (2.4b)
and
V,¢;(r)=—(myXq;)A(r) . (2.4c)

Note that Eq. (2.4a) is compatible with Egs. (2.4b) and
(2.4c) because of ¥3_,q;=0, for the hexagonal two-
dimensional lattice. Inserting Egs. (2.3) in the free energy
(2.2), we get the free energy in the new gauge, expressed
in terms of the transformed local fields %;(r), A(r), and
Q(r). Actually, one can verify that, owing to Egs. (2.4),
the self-energy and the self-interaction of the order-
parameter fields 77;, as well as the gradient terms of 7;,
are invariant under the above defined gauge transforma-
tion. In fact, the free energy (2.2b) takes the same form,
both in the discotic gauge variables and in the
transformed field variables. On the contrary, the Frank
energy, Eq. (2.2¢), is not strictly gauge invariant, being
dependent, in general, on the gauge-transformation func-
tions B(r) and A(r).

In order to decouple the bend field from the order pa-
rameter 17);, we restrict the general gauge transformation
defined in Eqgs. (2.3) and (2.4) to the particular case

¢ =¢;(z),
m,Xrot A=0 .

(2.5a)
(2.5b)

(2.2¢)

f

If the order-parameter phase-shift depends only on the
coordinate z, as in Eq. (2.5a), then the gauge-
transformation function B is a pure bend field. In fact,
inverting Eq. (2.4b) by meuns of

3

2 qtath=%q%)8aﬁ ’ a,BZX,y ’ (2.6)
i=1
i.e., Eq. (6) of [1], we get
3. 9¢,(z)
B(z)=%¢," 3 —5—a 2.7

i=1
where g is the modulus of q;, proportional to the inverse
lattice spacing. As the q; vectors lie in the XY plane, and
the B vector in (2.7) depends only on z, we have

divB=0 (2.8)

and

m,-rotB=0 . (2.9

Equations (2.8) and (2.9) mean that the splay and the
twist components of the field B vanish, respectively. On
the other hand, Eq. (2.5b) means that the bend com-
ponent of A vanishes, so that

divdm=div A , (2.10a)
my-rotdm=m, rot A , (2.10b)
m,Xrotdm=m,XrotB . (2.10c)

In that way, the director field &m has been separated, as
in Eq. (2.3b), into the superposition of a pure bend mode
B and a gauge field A, which contains only splay and
twist components. Moreover, as the phase shift ¢ de-
pends only on z, from Eq. (2.4c) we get A=0 and then
Eq. (2.3c) gives Q, =Q,, i.e., the proposed transformation
only changes the gauge field dm into A, while not
affecting Q.
The free energy in the soft-bend gauge is thus
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3

3
F=[d% [a S P +bnimmste; |3 il
i=1 i=1

3
L1

M,

+1y2(V . Q, ) +y5(rot AXV,Q,)

Therefore, in the soft-bend gauge, the order-parameter
gradient terms contain only the field A, which is a super-
position of only splay and twist modes, while the pure
bend field B is decoupled from the order parameter 7;.
As we shall see in Sec. III, the decoupling of the bend
mode from the order parameter implies noncritical
behavior of the bend constant. In this sense, bend is a
soft mode, in discotic liquid crystals. Equation (2.11), by
comparison with Eq. (2.2), also shows that the bend mode
explicitly breaks local gauge invariance. In fact, the free

+1K, fd3r(rotB)2 .
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3

2 3
1 2
+e; 3 it~ 3 |[V,+iq;- Al
P e M, 2

I i=1

2
h ’[Vl—iQZmOXqi]"q; 1 +1K,(divA)P+1K,(rot A+ 1y (V,Q,)

(2.11)

f

energy in the soft-bend gauge, Eq. (2.11), takes the same
form as in the discotic gauge, Eq. (2.2), with the
transformed fields »; and A in place of the fields 7; and
o6m, except for the last term in Eq. (2.11), which is a bend
term, depending on the performed gauge transformation.
Therefore, the fact that bend breaks local gauge invari-
ance is strictly related to decoupling of bend from the
matter.

In Fourier space, Frank elastic energy (2.2c) can be
written as (see also [12])

d3
Fy=1 [ -2 ((K,q} +K3q2)18m (@))>+(K, 92 + K 3g2)|6m, (@) 12+ (7,42 + 7,410, (q)]?

2 )
+v19.9,[Q,(@Q)dm*(q)+c.c. ]},

where q, is the projection of the wave vector q on the XY
plane, while 8m (q) and 6m,(q) are the components of
6m(q), longitudinal and transverse to q,, respectively.

Performing a general gauge transformation, in Fourier
space, we have

dm(q)= A(q)+B(q), (2.13)
with

A(q)=A4,(q)e,+ A1 (qle|+ 4,(q)e, (2.14)
and

B(q)=B,(q)e,+B,(q)e, +B,(q)e, , (2.15)
where the orthonormal set for A(q) is

e,=q/q , (2.16a)

et:l—:;%:l ) (2.16b)

e =e, Xe, , (2.16¢)
while the orthonormal set for B(q) is

e,=m,, (2.17a)

€.=q./q,, (2.17b)

(2.12)

e, =e, Xe, . (2.17¢)

Note that 4,(q) is the component of A(q) along q, i.e., a
splay mode, while 4|(q) is the component of A(q), or-
thogonal to q, in the q-m, plane, and then it is a bend
mode; finally A4,(q) is the component of A(q) perpendic-
ular to the gq-mg plane, and then it is a mixing of bend
and twist modes (see also Fig. 1).

In the discotic gauge, dm(q) is given by

om(q)=06m,(qle, +6m (qe, , (2.18)

since 8m,=0, as 8m is orthogonal to m, In order to
transform from the discotic gauge to the soft-bend gauge,
in Fourier space, we have to take

Al (q)=0. (2.19)

However, even if the pure-bend component of A(q) van-
ishes, Eq. (2.19), the critical field A(q) still contains
bend, since its component A4,(q) is a mixing of bend and
twist modes. In fact, taking Eq. (2.19) into account, the
Fourier transform of the bend term (myXrotA)? is
g2 4,(q)]?, while the Fourier transform of the twist term
(myrot A)* is g3|4,(q)|> Therefore, if we took bend
vanishing, that would lead to 4,(q)=0 and then even
twist would vanish. The director field, in the soft-bend
gauge, is thus
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FIG. 1. Unperturbed director m, is along the Z axis. In the
discotic gauge, variations 8m in m must occur in the plane or-
thogonal to m,. In this connection, the orthonormal triad
{e,,e e}, defined in Eq. (2.17) of the text, is displayed. In the
soft-bend gauge, on the other hand, the two independent com-
ponents of A are A,=&m,, which is orthogonal to the my—q
plane, and A4,, which lies along q. The third component of A,
lying in the my-q plane perpendicular to q, vanishes. In this
connection, the orthonormal triad {e,,e,,e;}, defined in Eq.
(2.16) of the text, is displayed.

A(q)=A4,(qle;+ 4,(q)e, . (2.20)

The difference between the two gauges is displayed in
Fig. 1. In smectics, an analogous gauge transformation,
anyway different, in form, leads to vanishing splay in the
critical field (4, =0), so that A is a pure transverse field
[9].

In addition to Eq. (2.19), the Fourier transforms of
Egs. (2.8) and (2.9) fix the soft-bend gauge, in Fourier
space:

q,B,(q)+¢q,B,(q)=0 (2.21)
and
9,B,(q)=0, (2.22)

respectively. Moreover, using dm, =0 and Eq. (2.20), we
get

B,<q>=—Az<q)=—5’inq(q) : (2.23)
By Egs. (2.21)-(2.23), we obtain
B,(q)=0, (2.24a)
q2
B (qQ=——4,(q), 2.24b
1\q 9.9 q q ( )

so that the field B(q), Eq. (2.15), in the soft-bend gauge, is
given in terms of A(q):

q, q?
_&,
q

B(q)= e, |4,(q) . (2.25)

The Fourier transform of the bend term (rotB)? is then
(qzqzz/qf)|Aq(q)|2, which must be added to ¢2| 4,(q)|?,
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coming from the Fourier transform of (myXrot A)2. The
splay term (div A)* gives, in Fourier space, ¢*| 4,(q)/?
while the twist term (mgrotA)? gives g?%|4,(q)|%
Therefore, the Frank energy (2.2c), in Fourier space, can
be reexpressed in terms of the soft-bend gauge as

d3
Fq=% -—q—(zﬂp ’(qui+K3q3)|A,(q)|2
2,2
q°q
+ |K1qg*+K3—5- |1 4,(q)]?
91

+(r192+7,4D)1Q,(q)?

+v34,9,[4,(qQ)Q}(q)+c.c.] } . (2.26)

Finally, we notice that, as a consequence of the per-
formed bend-decoupling gauge transformation, a term
nonanalytic in g, whose coefficient is just the bend con-
stant K5, appears in Frank energy (2.26). In Sec. III we
shall see that such a nonanalytic property implies non-
critical behavior of K ;.

III. THE GAUGE-FIELD PROPAGATORS

The application of the equipartition theorem to (2.26)
gives the gauge-field propagators in terms of the soft-
bend gauge. Taking free energy in terms of the K5 T unit,
the free, i.e., not coupled to the matter, propagators of
the gauge fields are

1

4,V =———, (3.1a)
! quf+K3q22
(4, @P)=—t (3.1b)
K142+K3q2q—22
q1
(1Q,(q)?)=—1 (3.1¢)

v1a2+vaql

where we have taken, for simplicity, y;=0. However,
the propagator (3.1b), which is our main task, is exact
even for y;70, as 73 couples 4, with Q,, while the com-
ponent 4, remains decoupled, as one can see from (2.26).
The bend term in { |Aq(q)|2), Eq. (3.1b), is not analytic
in g, which is due to the previously performed gauge
transformation that has decoupled bend from the matter.
The propagator (3.1a) of 4, is the same as that of m,,
which can be drawn from (2.12), being 4,=8m,. On the
other hand, 4 4 can be related to &m . In fact, using

Sml(q)Zel' A(q)+Bl(q) ’ (3.2)
and exploiting also (2.20) and (2.24b), one obtains
8m (q)=-1 4,q), (3.3)
91

and then
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2

(|8m (q)|*)= (14,(q)*)

9
9.

1

=, (3.4)
Kiq1+K;q;

which can be also drawn directly from (2.12). Note that,

in Eq. (3.4), the first equality is always valid, while the

second equality holds good only for free propagators.
Defining, in the discotic gauge,

D 5(q)=(8m,(q)dm}(q)) , (3.5)

with a,B=x,y, the inverse, in the matrix sense, of the
free propagator tensor is (for y;=0)

gﬁ(q):(KIQE +K3sz)elaeiﬁ+(quf +K34z2)etaetﬁ .
(3.6)

The coupling between the order parameter and the gauge
field 6m renormalizes the inverse propagator. At one-
loop order in the perturbative series of graphs, the contri-
bution due to the fluctuations of the order parameter is
[1,11] '
2

Oupl @) =1 b1a%80s » 6.7
where £,=(2aM)~'/? is the correlation length of the or-
der parameter in the direction parallel to the direction of
the liquid columns, while 8§,5=e e z+e,.e,5 is the
Kronecker delta in the XY plane. The inverse of D g,
Eq. (3.5), at oae-loop order is then

Q.50)=045(q)+Q,5(q)

2

90
= | |Kit 766 gl +K;q? |ejqeip
95
AT g1 +K1q} |e,qeip - (3.8)

In the soft-bend gauge, the inverse, in the matrix sense, of
the free propagator tensor  4,(q) 4} (q)),is
2

q
Pls(q)= K1q2+K3q2é]eqaqu

+[K2q%+K3qzz]etaet/3 ’ (3.9)

while the corresponding renormalized inverse propaga-
tor, in accordance with Eq. (3.4), is, at one-loop order,

95 q°q}
_ 2 z
Paﬁ(q)_ K1+ 167 §|| q +K3 q% eqaeqﬁ

2
90
+ [ lK2+—lg;§“ gl +Ksq? |eqep - (3.10)

Near the second-order phase-transition temperature,
the correlation length & diverges, so driving the critical
enhancements of the elastic constants. Actually, the
transition from the hexatic N +6 phase to the hexagonal
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discotic phase can be weakly first order [1], so that pre-
transitional effects can be observed. From Eq. (3.8) or
(3.10), we obtain, for the renormalized elastic constants,
at one loop order [1,11],

2

r— 9o
K=K+ 18 (3.11a)
5
Ky =K, +1e—&) (3.11b)
K=K, . (3.11c)

Indeed, the equality (3.11c) for K5 is exact to all orders in
perturbation theory. In fact, there are no graphs that re-
normalize K3, since it is the coefficient of a term nonana-
lytic in g, in the propagator (3.9) that is drawn from free
energy (2.26). The perturbation expansion only yields an-
alytic terms and therefore it cannot reproduce a nonana-
lytic term. For a similar argument, in smectic phases the
splay constant K, is noncritical [9,10]. We stress that
such a nonperturbative result originates in the previously
performed gauge transformation, which has decoupled
bend from the matter.

In conclusion, we have studied a peculiar gauge theory,
Abelian but not equivalent to electrodynamics, for the
conjectured hexatic N + 6 phase near the transition to the
hexagonal discotic phase, on the basis of our model for
that phase transition [1,2]. The full curvature field Q,
which fixes the local orientational order [1], plays the role
of a gauge field. The main result is that it is possible to
define a suitable gauge transformation, which decouples
the bend mode of the director distortion from the
density-wave order parameter. The bend component of
the gauge field, being decoupled from the order parame-
ter, is not affected by the renormalization yielded by the
gauge coupling. As a consequence, the bend elastic con-
stant K, is noncritical. On the other hand, the proposed
gauge transformation makes the bend term in the free en-
ergy nonanalytic in the wave vector, so that the elastic
constant K5 is not renormalized to all orders in perturba-
tion theory. Indeed, such a theory is not strictly gauge
invariant (see also [4]), as the bend term breaks the local
invariance under rotations. Anyway, just for this reason,
the director gauge field dm can be separated, by a gauge
transformation, into the superposition of a critical mode
and a noncritical bend mode. Such a peculiarity of the
bend mode is expressed in the free energy, where, in
terms of what we have called the soft-bend gauge, the en-
ergy of bend is not analytic in the wave vector. There-
fore, the noncritical behavior of bend goes beyond the
first-order approximation in perturbation theory, in terms
of which the results (3.11) were drawn in [1], and it must
be considered as an exact, nonperturbative result that can
be argued on the basis of the above-described gauge
theory for discotic phases.
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